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E0' = -1 .8 V vs SCE,14 the electron-transfer proceeds 
readily: 

C5H5FeC6(CHs)6 + O 2 - C 5H 5FeC 6 (CH 3 ) 6
+ + O2"-

It has recently been shown15 that electron transfer occurs 
in media of low dielectric constant between two radicals of 
greatly different electronegativities, yielding ion pairs. 

Although O 2
- - is a weak base on the grounds that the pAa 

of HO2- is 4.88, a solution of O 2
- - behaves as if it is strongly 

basic and can promote proton transfer from' acids with an ap­
proximate pATa value of 23 as has been emphasized re­
cently.16 

As further evidence, KO2 reacts with 3b in Me2SO or with 
equimolar 18-crown-6 in THF to give 2 in 30 min at room 
temperature.17 Also note that the mass spectrum of 1 shows 
an important peak at [M - I ] + , 282.106, consistent with an 
easy deprotonation of the cation 2. 

A reaction between cobaltocene and O2 has been reported 
to produce an oxygen bridge between two J J 4 - C 5 H 5 groups,183 

but this and other radical-type reactions of cobaltocene18b can 
be understood on the basis of their low redox potential ( -1 .2 
V/SCE) 1 9 and the important ligand character of its e j g * 
HOMO.2 0 The interaction of r?5-C5H4RFe-??6-arene with 3O2 

is probably not relevant to this latter reaction. An endoperoxide 
can be involved if 1O 2 is the interacting species or alternatively 
an F e ' - 0 2 bond (or Fe1^O2""', depending on one's point of 
view) as an intermediate would imply a partial decoordination 
of the arene ligand. We plan to investigate this mechanism in 
more detail since the peculiar reactions of dioxygen described 
here usefully mimic the reactivity of O 2

- - vs. 1O2 in biologically 
significant systems. 
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Intramolecular Kinetic Isotope Effect in 
Gas-Phase Proton-Transfer Reactions 

Sir: 

In spite of the potential usefulness of kinetic isotopic effects 
(KIE) toward the detailed understanding of energy surfaces 
of ion-molecule reactions and the dynamics of these processes, 
there has been little activity in this area. An early study of the 
intramolecular KIE in the reaction of raregas ions with HD 
revealed that at near-thermal energies an inverse isotope effect 
is observed (&H/&D < I).1 This fact has been interpreted as 
arising from the unimolecular decomposition of a long-lived 
intermediate X H D + . At higher ion translational energies, 
where kn/ku > 1, a direct reaction model provides satisfactory 
agreement with experiment.2 

In the present communication, we report preliminary results 
on intramolecular kinetic isotope effects of a series of gas-phase 
proton-transfer reactions, where variation of R and X provides 
a convenient way of varying the exothermicity of the reaction. 

2S^ ^r-KM + XC6H4CHD-

R O - • XC6H4CH2D C ! T ^ 

kJT̂ -ROD *XC6H4m2~ 

Previous measurements by ICR of the absolute rate constant 
for the methoxide-toluene reaction show that it is an order of 
magnitude smaller than a typical ion-molecule collision rate 
constant.3 On the other hand, excitation function measure­
ments for this same reaction suggest that there is no activation 
energy for the process.4 These gas-phase reactions are also very 
useful for comparison with primary KIE observed in slow 
proton transfer reactions in solution, typical of carbon acids. 
The solution processes apparently exhibit a maximum effect 
when ApK ~ 0,5'6 an observation which has been rationalized 
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Table I. Isotope Effect, kn/ko, for Reaction I0,6 

P-CH3C6H4CH2D 
C6H5CH2D 
C6H5CHDCH3 
W-FC6H4CH2D 
P-ClC6H4CH2D 
M-ClC6H4CH2D 

CH3O-

0.83(1.7)' 
0.84 (-0.2) 
0.88 (-0.9) 
1.49 (-6.5) 
1.59 (-7) 
1.56 (-8.5) 

C2H5O-

0.81 (2.3)c 

0.97 (-3.5) 
1.31 (-4) 
1.28 (-5.5) 

(CHa)2CHO-

0.81 (-1.3) 
0.94 (-2) 
1.15 (-3.5) 

(CH3)3CCO-

0.66 (-0.5) 
0.77 (-1) 
0.71 (-2.5) 

(CH3)3CCH20-

0.69(1) 
0.76 (0.3) 
0.74 (-1) 

" Typical root-mean-square deviation for the measurements is better than ±0.07. * The exothermicities (AH°) of the reactions are given 
in parentheses in kcal mol-1. The first three lines are accurate values based on the acidity scale of Bartmess, J. E.; Mclver, R. T., Jr., private 
communication. The other values are estimates based on the assumption that the substituent effect in toluenes is similar to that observed in 
the gas-phase acidity of phenols. c These reactions were studied at neutral pressures above 10-5 Torr. 

within the framework of transition-state (TS) theory in terms 
of the symmetry or extent of proton transfer in the TS. 

Our measurements of ku/ko by ICR7 are shown in Table 
I along with the thermochemistry for the reactions. The results 
show a definite trend for ^ H M D starting as a normal isotope 
effect for appreciably exothermic reactions (>3 kcal mol-1) 
and proceeding smoothly toward an inverse isotope effect as 
the reaction approaches thermoneutrality or becomes endo­
thermic. 

Our observations can be rationalized in terms of the likely 
potential energy surface for these reactions. Brauman8 has 
recently proposed a dynamic model to account for the slowness 
of several reactions involving carbon acids in the gas phase. For 
our systems, the reaction can be represented as going through 
a double minima potential with a central energy barrier. The 
intermediate complexes (I and II) are expected to be weakly 

R C H ' • • H D C -
H a 

bound species with stabilities in the range of 10 kcal mol-1. For 
very exothermic processes, the potential energy diagram will 
be asymmetric, and the intramolecular KIE might be expected 
to be determined by the relative frequency factors for ab­
stracting a proton or a deuteron in complex I. Thus, it is in­
teresting to notice that for these reactions the experimental 
ku/ko values are in the vicinity of (WD/WH) 1 / 2 . AS the re­
action becomes less exothermic, and the potential energy 
surface more symmetric, the behavior in the second interme­
diate complex will become important. Thus, we propose that 
the branching ratio for these systems will be influenced by the 
equilibrium partition between Ha and Hb. Estimates of the 

equilibrium isotope effect for the separated systems calculated 
from approximate vibrational frequencies yield values ranging 
from 0.52 to 0.71.9 These values are, interestingly enough, close 
to the limiting values observed for the inverse isotope effect in 
near-thermoneutral or endothermic reactions. That appre­
ciable scrambling can take place in complexes like Ha and Hb 
of endothermic reactions has been recently shown by DePuy10 

for systems similar to those studied in the present work. 
We believe that the present results open up a wide range of 

applications of isotope effects in mechanistic studies of ion-
molecule reactions. 
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Preparation of Vinblastine, Vincristine, 
and Leurosidine, Antitumor Alkaloids from 
Catharanthus spp. (Apocynaceae) 

Sir: 

Antitumor alkaloids of the vinblastine group have been the 
subject of numerous chemical, biological, pharmacological, 
and clinical studies for the past 20 years. Efforts to achieve the 
synthesis of this type of compound culminated in 1974 when 
we discovered a new method for coupling the two obvious 
precursors of the vinblastine-type alkaloids, i.e., catharanthine 
(1) and vindoline (2) la 'b leading to A15'<20'>-20'-deoxyvin-
blastine (3, anhydrovinblastine). We also disclosed a strategy 
to be used to synthesize compounds of this class, for example, 
vinblastine (4), vincristine (5), leurosidine (6), and leurosine 
(7). Several other research teams subsequently investigated 
this method of coupling. 

Two theoretical approaches can be considered for the 
preparation of these bisindole alkaloids from 1 as starting 
material. 

In the first method which has been used to prepare the bis­
indole alkaloids 4,5,2 and 7,3'4 carbon atoms Ci5 and/or C2o 
of 1 are functionalized before using the coupling reaction. Such 
an approach is not very efficient, and side reactions often occur 
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